Testing the CVC Hypothesis in the β Decay of ¹⁴O

J. Burke†, S. Freedman*†, B. Fujikawa†, P. Vetter†, D. Wutte**

The A = 14 system offers an opportunity to test the Conserved Vector Current hypothesis of the electroweak interaction. CVC relates the width of an M1 transition in a nucleus with the shape factors of the beta decay spectra to the same nucleus from isospin analog states. implication of CVC has been tested in the A=12 system by examining the shape factors of $^{12}\text{B} \rightarrow ^{12}\text{C} \text{ and } ^{12}\text{N} \rightarrow ^{12}\text{C}.$ However, the agreement with CVC is rather poor, and several experiments disagree. 1 The A = 14 system offers another CVC test with larger shape factors. The shape factor is a deviation of the β_{\pm} spectrum from the allowed-order shape by a factor $S(E) = 1 + a_+ E$, where E is the total β energy. The difference $(a_+ - a_-)$ depends on the weak magnetism form factor, which is related via CVC to the 2.3 MeV γ decay rate in 14 N.

We intend to measure the shape factor in the $0^+ \rightarrow 1^+$ branch of the β + decay of ¹⁴O using a flat-field magnetic spectrometer with a multi-wire proportional chamber detector. Because the halflife of ¹⁴O is only 71 seconds, it must be produced on-line at the 88" Cyclotron. To avoid error in the spectrum from a thick source for the spectrometer, we will produce a beam of radioactive ¹⁴O using an ECR ion source. The ¹⁴O is produced by ¹²C (³He, n)¹⁴O using a heated carbon target. The C-O gas evolving from the target is transported in a closed gas line to the ion source on the cyclotron vault roof. The ionized ¹⁴O will be implanted into a thin foil source at nearly uniform depth. Positrons from the implanted ¹⁴O then enter the spectrometer. The ECR ion source has been tested and has demonstrated 26.5% ionization efficiency for $^{16}\text{O}^{6+}$ from CO.

During 1998, we tested our production target and transport hardware and were able to achieve 2×10^7 atoms per second of ^{14}O at the input to the ion source, using a 3 He beam current on target of 2 p- μ A. (Fig. 1) This production rate is

sufficient perform the shape to factor measurement to an uncertainty of 0.005 /(MeV) in 45 hours of operation. This copious production was achieved using a novel physical form of graphite - reticulated vitreous carbon "foam" - as a resistively heated oven element. Our target production as a function of temperature is shown in Fig. 1. During 1999, we expect to integrate ¹⁴O production with the new ECR ion source. We hope to achieve the ionization and implantation steps during 1999.

We also intend to measure the branching ratio of the superallowed $0^+ \rightarrow 0^+$ transition in 14 O. This branching ratio has been measured only once, 2 and is important for a precise measurement of the V_{ud} element in the CKM matrix. This requires a precise measurement of the β spectrum at several spectrometer B fields to deconvolve the branches of the beta decay.

Footnotes and References

- * University of California, Berkeley
- † Lawrence Berkeley National Laboratory, Nuclear Science Division
- ** Lawrence Berkeley National Laboratory, Accelerator and Fusion Research Division
- 1. A. Garcia and B.A. Brown, Phys. Rev. C, **52**, 3416 (1995).
- G.S. Sidhu and J.B. Gerhardt, Phys. Rev. 148, 1024 (1966).

Fig. 1 Production of ¹⁴O as a function of target temperature.